6.2 Inconsistent Systems and Dependent Equations

* Special Cases

At any time in the process of solving a system of equations using GaussJordan Elimination:

1.) If a row becomes all ZEROs on the left side of the vertical line, and a NONZERO number on the right side of the vertical line, then the system has no solution.
2.) If a row becomes all ZEROs, then the system has infinite number of solutions.
(Your solutions will be equations. Two equations express x and y in terms of z.)

Ex. Solve each system of equations using Gauss-Jordan Elimination. State the solution.
a.) $\left\{\begin{array}{l}2 x-4 y+z=3 \\ x-3 y+z=5 \\ 3 x-7 y+2 z=12\end{array}\right.$
b.) $\left\{\begin{array}{l}x+y-10 z=-4 \\ x-7 z=-5 \\ 3 x+5 y-36 z=-10\end{array}\right.$

* Non-square Systems

Square Systems: the number of equations $=$ the number of variables Non-Square Systems: the number of equations \neq the number of variables

Ex. Solve each system of equations using Gauss-Jordan Elimination. State the solution.

$$
\left\{\begin{array}{l}
-2 x-5 y+10 z=19 \\
x+2 y-4 z=12
\end{array}\right.
$$

Ex. (\#49) An accountant checks the reported earnings for a theater for three nightly performances against the number of tickets sold.

Night	Children Tickets	Student Tickets	General Admission	Total Revenue
$\mathbf{1}$	80	400	480	$\$ 9,280$
$\mathbf{2}$	50	350	400	$\$ 7,800$
$\mathbf{3}$	75	525	600	$\$ 10,500$

a.) Let x, y, and z represent the cost for children tickets, student tickets, and general admission tickets, respectively. Set up a system of equations to solve for x, y, and z.
b.) Set up the augmented matrix for the system and solve the system. (Hint: To make the augmented matrix simpler to work with, consider dividing each linear equation by an appropriate constant.)

