6.2 Inconsistent Systems and Dependent Equations

Special Cases

At any time in the process of solving a system of equations using Gauss-Jordan Elimination:

- If a row becomes <u>all ZEROs</u> on the <u>left</u> side of the vertical line, and a <u>NON-ZERO</u> number on the <u>right</u> side of the vertical line, then the system has <u>no</u> <u>solution</u>.
- 2.) If a row becomes <u>all ZEROs</u>, then the system has **infinite number of solutions**.

(Your solutions will be equations. Two equations express x and y in terms of z.)

Ex. Solve each system of equations using Gauss-Jordan Elimination. State the solution.

a.)
$$\begin{cases} 2x - 4y + z = 3\\ x - 3y + z = 5\\ 3x - 7y + 2z = 12 \end{cases}$$

b.)
$$\begin{cases} x + y - 10z = -4 \\ x - 7z = -5 \\ 3x + 5y - 36z = -10 \end{cases}$$

* Non-square Systems

Square Systems: the number of equations = the number of variables **Non-Square Systems:** the number of equations \neq the number of variables

Ex. Solve each system of equations using Gauss-Jordan Elimination. State the solution.

 $\begin{cases} -2x - 5y + 10z = 19\\ x + 2y - 4z = 12 \end{cases}$

Ex. (#49) An accountant checks the reported earnings for a theater for three nightly performances against the number of tickets sold.

Night	Children Tickets	Student Tickets	General Admission	Total Revenue
1	80	400	480	\$9,280
2	50	350	400	\$7,800
3	75	525	600	\$10,500

a.) Let *x*, *y*, and *z* represent the cost for children tickets, student tickets, and general admission tickets, respectively. Set up a system of equations to solve for *x*, *y*, and *z*.

b.) Set up the augmented matrix for the system and solve the system. (*Hint*: To make the augmented matrix simpler to work with, consider dividing each linear equation by an appropriate constant.)